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CAL2030 project: Overview

California’s water crisis

Population growth 

 In the near future California will be dealing with

Growing Water Demand Shrinking Water Resources

Climate ChangeWater quality regulations 
and 

environmental requirements
Shrinking snow pack

Time shift in 
water supply

California Neighboring states
(Arizona-Nevada)

This calls for an integrated, efficient and sustainable plan for
managing the water resources

which is one of focuses of the Berkeley Water Center



 This integrated system will include an open and flexible
platform that connects all California’s water systems.

 Why an open platform?
 More efficient resource management by allowing

decision makers to test different possible coordinated
operation scenarios.

 Improved system reliability in term of water supply by
considering:

 uncertainty in future hydrologic events (e.g. impacts of climate
change).

 uncertainty within the management system (e.g. modeling
processes).

 disaster management issues such as exploring alternative water
supply sources in case of a catastrophe.

CAL2030 project: system integration



Conduct a pilot project to focus on some of the raised issues in a smaller
scale by:
 Identifying and assessing end-to-end uncertainty in a water resources

management system with multiple users such as Sacramento River
Basin.

 Evaluating if more accurate estimation of the uncertainty leads to
sustainable management of our limited water resources in the state of
California.

 Two steps:

CAL2030 project: pilot
project

Hydrological 
Modeling

Water Resources 
Modeling 

Climate Inputs
(e.g. Precip)

Water Supply forecast

Hydrological Forecast Water Resources Management



 Models: Three distributed hydrologic models to generate streamflow
ensembles.

 Hydrologic MODel (HYMOD,5 par)
 Simple Water Balance model (SWB, 5 par)
 SACramento Soil Moisture Accounting (SAC-SMA) Model (13 par)

 Study area: Upstream of Shasta reservoir in Sacramento basin (including all
the 12 catchments that contribute to the inflows to Shasta).

 Hydrologic data: Monthly precipitation and temperature data from 1962-
1994 for each sub-catchment.

 Model parameters assumed identical over the whole basin.

Accounting for Hydrological Uncertainty



Hydrological forecasting: Performance versus Complexity
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Performance of Various Distributed Models

Many distributed
hydrologic models exist
right now which generates
dissimilar results under
the same condition using
the same forcing data.
This was confirmed under
the first Distributed
Modeling
Intercomparison Project
(DMIP I).

Cumulative simulation errors for calibrated hydrologic
models: Illinois River basin at Watts

 (DMIP Results, (From Reed et al., 2004))



Accounting for hydrological uncertainty

 Integrated Bayesian
Uncertainty Estimator
(IBUNE; Ajami et al., WRR,
2007).

 Framework that accounts for
uncertainty in input forcings,
model parameters and model
structure.

 Optimization + MCMC +
Model combination

Input+Parameters
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Accounting for Input and Parameters Uncertainty

We can formulate the problem here as follows for model Mk:

                                            yk,t=f(It,θ, Mk,t)

So,
  what do we want?      probability of the estimated streamflow
based on the available data:
                           D= [observed input (I), Observed Streamflow (yobs)]

          pk(yt|θ,D, Mk) ∝ pk (θ|D, Mk)

Streamflow estimate 
From model k at time t

Input at time t Model parameters

Model k
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How to account for input uncertainty

Introduce a Input Error Model  multiplier (φt) drawn at each time step from the same
distribution with unknown mean mφ, and standard deviation σφ,

It = φt·It
obs

 , φt~N(mφ,σφ)

θI =[mφ,σφ ] 

in pk (θ|D, Mk), θ  Includes [θI , θM ]

D= [observed input (I), Observed Streamflow (yobs)]

  We want to estimate the probabilistic quantity θ, given D and M, i.e., p(θ|D,M).

 Markov Chain Monte Carlo (MCMC) method is ideal for solving above problem

 We used the Shuffled Complex Evolution Metropolis (SCEM-UA) method for this
study (See Vrugt et al., WRR, 2003).

Model parameters

Input error model 
 parameters



Bayesian Model Averaging- BMA

 Madigan et al. (1996) --->
wk = p(Mk|D)

Likelihood of model Mk being a
true model -- > Weights should

sum up to unity
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•EM (Expectation-Maximization) method for estimating the weights
for this study. 

D= [observed input (I), Observed Streamflow (yobs)]
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 The consensus prediction (predictive mean) and the associated
uncertainty of y are:

E(y|D) = Σ wk • E(y|Mk , D)

 posterior variance of y decomposes into

       =  Between-Forecast variance + Within-Forecast Variance

normally not
accounted (i.e.
assumed zero)  ---- >
not true, unless the
best forecast were
always exact

Consensus Prediction and Uncertainty associated with it:
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Streamflow
Performance of IBUNE’s probabilistic and Deterministic simulations
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IBUNE versus individual models
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IBUNE versus individual models
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Input Uncertainty Model Uncertainty

First step
 (accounting for hydrological uncertainty)

Water Resources Management under
Uncertainty

Second step 
(uncertainty propagation)

Hydrologic inputs
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Propagation of hydrological uncertainty
 Propagate the estimated uncertainty through a water

management and planning model such as WEAP.

 WEAP includes hydrologic module and management
module.

 Hydrologic module: simple 5 parameter hydrologic model.

 Distributed based on the land class within every sub-
catchment. Five different land classes therefore 25
parameters were calibrated.

 Looking at the inflow to Shasta Dam.

 Single aggregated demand which represents the water
demand south of Shasta.

 Evaluating the reliability of water supplies by analyzing the
estimated uncertainty.



WEAP model
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Percent of Annual Unmet Demand
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Conclusion
 IBUNE is an innovative step towards more accurate and reliable

hydrological forecasts, including floods and water supply.

 Accounting for input uncertainty and model structural uncertainty
(considering multiple models) considerably improves prediction of
water management variables.

 As the temporal resolution decreases, the spatial resolution loses its
importance.

 Accuracy of our reservoir outflow predictions was improved almost
by 23%. Such improvement can lead to more efficient operation of
reservoir consequently more efficient management of water
resources.

 The characteristic of hydrologic uncertainty changes as it is
propagated through a water resources management tool such as
WEAP.



ThanksThanks
                            Questions?

Man is a complex being; he makes the deserts bloom andMan is a complex being; he makes the deserts bloom and
lakes die.  (Gil Stern )lakes die.  (Gil Stern )

e.mail: newshaajami@berkeley.edu


